鉅大LARGE | 點擊量:3399次 | 2018年08月20日
石墨烯和塑料怎么復合制備呢?導電性如何?
高導熱塑料因其良好的加工性能、低廉的價格以及優(yōu)異的導熱性能而在變壓器電感、電子元器件散熱、特種電纜、電子封裝、導熱灌封等領域大放異彩。以石墨烯為填料的高導熱塑料能夠滿足熱管理、電子工業(yè)中高密度、高集成度組裝發(fā)展的要求。
隨著工業(yè)生產(chǎn)和科學技術的發(fā)展,人們對導熱材料也提出了更高的要求。具有優(yōu)良導熱性能的陶瓷、金屬等材料,由于其電絕緣性和加工性能較差、成本高,已經(jīng)難以適應現(xiàn)代技術發(fā)展的需求。因此,開發(fā)新型導熱復合材料已經(jīng)成為當前研究的熱點。
高導熱塑料因其良好的加工性能、低廉的價格以及優(yōu)異的導熱性能而在變壓器電感、電子元器件散熱、特種電纜、電子封裝、導熱灌封等領域大放異彩。近年來,導熱塑料愈來愈受到重視,其應用領域亦不斷拓展。
傳統(tǒng)導熱塑料主要是以高導熱的金屬或無機填料顆粒對高分子基體材料進行均勻填充。當填料量達到一定程度時,填料在體系中形成了類似鏈狀和網(wǎng)狀的形態(tài),即形成導熱網(wǎng)鏈。當這些導熱網(wǎng)鏈的取向方向與熱流方向平行時,就會在很大程度上提高體系的導熱性。
石墨烯是一種由碳原子構成的單層片狀結構的新型碳納米材料,厚度僅為0.35nm。由于其具有大的比表面積、良好的熱穩(wěn)定性和化學穩(wěn)定性、較強的疏水性、易于進行化學修飾等優(yōu)點,有望在高性能電子器件、復合材料、場發(fā)射材料、氣體傳感器及能量存儲等領域獲得廣泛應用。而且它是由sp2雜化碳原子緊密排列形成,具有獨特的二維周期蜂窩狀點陣結構,其結構單元中所存在的穩(wěn)定碳六元環(huán)賦予其優(yōu)異的熱性能,被認為是優(yōu)秀的熱控材料。
以石墨烯為填料的高導熱塑料能夠滿足熱管理、電子工業(yè)中高密度、高集成度組裝發(fā)展的要求。例如純聚酰胺6(PA6)的熱導率為0.338W/(m?K),當填充50%的氧化鋁時,復合材料的熱導率為純PA6的1.57倍;當添加25%的改性氧化鋅時,復合材料的熱導率比純PA6提高了3倍;而當添加20%的石墨烯納米片時,復合材料的熱導率達到4.11W/(m?K),比純PA6提高了15倍以上,這展示了石墨烯在熱管理領域的巨大應用潛力。
一、石墨烯的制備及導熱性能
1.1石墨烯的制備
自從AndreGeim和KonstantinNovoselov于2004年首次采用“微機械分離法”獲得石墨烯以來,已有很多方法被用來制備石墨烯。這些制備方法按制備思路可以分為兩大類:(1)自下而上地在限定的基底上利用小分子碳源原位生長出石墨烯;(2)自上而下地以石墨為原料,橫向剝離,如機械剝離法、液相剝離法和氧化還原法等。其具體制備方法如表1所示。
1.2石墨烯的導熱性能
低維碳納米材料,如石墨烯和碳納米管等,具有高達3000~6000W/(m?K)的熱導率。Balandin等依據(jù)激光激發(fā)功率測得的拉曼G峰頻率和獨立測量的G峰溫度系數(shù)得出單層石墨烯的室溫熱導率高達5300W/(m?K),明顯高于碳納米管(3000~3500W/(m?K))和金剛石,是室溫下銅熱導率(約為400W/(m?K))的10倍多。
由于材料中的熱量以聲子的形式傳遞,Lindsay等通過求解Boltzmann輸運方程將石墨烯熱傳導過程中各聲子對熱導率的貢獻分解,結果表明,在300K的溫度下,與LA和TA聲子相比,ZA聲子對石墨烯中的熱傳導過程發(fā)揮主要貢獻,而且其貢獻的熱導率隨著石墨烯長度的增加而增大。同時,聲子散射會對石墨烯的導熱性能造成影響。
Seol等將石墨烯放置在二氧化硅基底上,此時石墨烯與基底的相互作用會造成聲子散射,其熱導率降至600W/(m?K),但仍高于工業(yè)中廣泛使用的金屬銅(400W/(m?K))。事實上,石墨烯不可避免會有缺陷,比如結構缺失和邊緣粗糙,而這些缺陷的存在會影響石墨烯的導熱性能。
通過比較發(fā)現(xiàn),石墨烯納米帶中移除由6個碳原子構成的六邊形結構后,熱導率明顯降低,且六邊形結構缺失的越多,熱導率越低;另外邊緣粗糙的石墨烯納米帶的熱導率也下降明顯。
二、石墨烯/聚合物復合材料的制備及其導熱性能
石墨烯/聚合物復合材料導熱性能的優(yōu)劣與其制備過程中的加工條件是分不開的。不同的制備方法導致填料在基體中的分散性、界面作用和空間結構均有所不同,而這些因素則決定了復合材料的剛度、強度、韌性和延展性等。就目前研究所知,對于石墨烯/聚合物復合材料,可以通過對剪切力、溫度和極性溶劑的控制來控制石墨烯的分散程度以及石墨烯片層的剝離程度。
傳統(tǒng)石墨烯/聚合物復合材料的制備方法包括溶液混合法和熔融共混法,而在化學改性方面應用較多的還有原位聚合法、乳液混合法、層層自組裝技術(LbL)等。
溶液混合法是將石墨烯材料(GO、RGO)在溶劑中溶解制得懸浮的單層石墨烯,使其最大程度地分散在聚合物基體中。如將改性氧化石墨烯GO分散在有機溶劑中,還原得到石墨烯RGO,然后與聚合物進行溶液共混制成復合材料。Kim等采用溶液共混法制備了GO/熱塑性聚氨酯復合材料。
研究發(fā)現(xiàn),與熔融共混法相比,溶液混合法能將石墨烯更好地分散在聚合物基體中。這種方法因其分散效果好、制備速度快以及能夠很好地控制各成分的狀態(tài)而得到了廣泛的應用;但該方法需要使用有機溶劑,會對環(huán)境造成不良影響。
熔融共混法是一種無溶劑制備方法,利用擠出機產(chǎn)生的剪切力克服界面作用力將填料分散在聚合物熔體中。Zhang等先將石墨氧化、熱剝離還原制得石墨烯,然后采用熔融共混法制備石墨烯/聚對苯二甲酸乙二醇酯(PET)復合材料。
熔融共混中由于分別制備石墨烯和聚合物,因此石墨烯的尺寸與形態(tài)可控,但是石墨烯在聚合物基體中集聚而不易分散,并且與聚合物的界面作用較差。Yu等采用熔融共混法制備了石墨烯/PA6復合材料,結果表明,采用該法可將石墨烯均勻地分散于PA6中,確保復合材料中石墨烯與PA6界面的良好微觀界面接觸。
熔融共混法是制備石墨烯/聚合物復合材料比較實用的方法,其工藝較為簡單,可實現(xiàn)復合材料的大規(guī)模低成本制備,但是較高的溫度和局部壓力會影響復合材料各成分的穩(wěn)定性。
原位聚合法是將石墨烯與聚合物單體混合,然后加入催化劑引發(fā)反應,最后制得復合材料。Hu等通過將GO分散于二甲基乙酰胺(DMAC)中進行功能化處理,使其能夠更好地分散于有機溶劑,再通過原位聚合法合成GO/聚酰亞胺納米復合材料。
通過檢測發(fā)現(xiàn),這種方法沒有破壞復合材料的熱穩(wěn)定性,并且當GO體積分數(shù)為10%時,復合材料的彈性模量提高了86.4%。不過原位聚合法的反應條件難以確定,加入導熱添加劑后會對聚合物產(chǎn)生不確定影響。
乳液混合法則利用了經(jīng)表面改性的石墨烯在水中的良好分散性,將其分散液與聚合物乳液混合,然后通過還原制備石墨烯/聚合物復合材料。
Kim等將表面改性的多層石墨烯經(jīng)十六烷基三甲基溴化銨(CTAB)穩(wěn)定化處理后,制成分散良好的水分散液,然后同丁苯橡膠(SBR)乳液混合制得石墨烯/SBR復合材料。同熔融共混法相比,乳液混合法制備的復合材料具有更好的分散效果和空間
穩(wěn)定性,而且該方法不使用有機溶劑,不破壞環(huán)境。
層層自組裝技術(LbL)在制備高強超薄薄膜、細胞膜和高強涂料方面很有優(yōu)勢。該技術能夠精確地調(diào)節(jié)石墨烯/聚合物界面,使石墨烯得到良好分散。Zhao等通過LbL技術制備了聚乙烯醇(PVA)和GO的多層薄膜,然后通過浸漬輔助沉積法制備了高度取向的超薄多層納米片層,其機械強度較之聚合物基體顯著提高。
四、小結
石墨烯填充高導熱塑料的導熱率較高,且具有良好的熱穩(wěn)定性,其發(fā)展前景非常廣闊。如今,如何批量、低成本制備高品質的石墨烯材料以及如何對石墨烯進行可控功能化處理以提高其在聚合物中的分散性仍然是具有挑戰(zhàn)性的課題。在今后的工作中,還需對復合材料中石墨烯與聚合物之間相互作用的機理進行探討,并使之系統(tǒng)化、理論化,以減少相關研究工作的盲目性;同時還要進一步考察石墨烯填充高導熱塑料導熱性能的影響因素,繼續(xù)深化該材料導熱性能的研究。