鉅大LARGE | 點擊量:3291次 | 2018年09月30日
分析固態(tài)電解質在鋰金屬負極應用上的優(yōu)勢
為什么一定是固態(tài)電池
1、不燃燒,根除安全隱患
固態(tài)電池是采用固態(tài)電解質的鋰離子電池。工作原理上,固態(tài)鋰電池和傳統(tǒng)的鋰電池并無區(qū)別:傳統(tǒng)的液態(tài)鋰電池被稱為“搖椅式電池”,搖椅的兩端為電池的正負兩極,中間為液態(tài)電解質,鋰離子在電解液中遷移來完成正負極間的穿梭實現充放電,而固態(tài)電池的電解質為固態(tài),相當于鋰離子遷移的場所轉到了固態(tài)的電解質中。固態(tài)電解質是固態(tài)電池的核心。
固態(tài)電解質不可燃燒,極大提高電池安全性。與傳統(tǒng)鋰電池相比,全固態(tài)電池最突出的優(yōu)點是安全性。固態(tài)電池具有不可燃、耐高溫、無腐蝕、不揮發(fā)的特性,避免了傳統(tǒng)鋰離子電池中的電解液泄露、電極短路等現象,降低了電池組對于溫度的敏感性,根除安全隱患。同時,固態(tài)電解質的絕緣性使得其良好地將電池正極與負極阻隔,避免正負極接觸產生短路的同時能充當隔膜的功能。
2、兼容高容量正負極+輕量化電池系統(tǒng),推動能量密度大飛躍
更寬的電化學窗口,更易搭載高電壓正極材料:提高正極材料容量需要充電至高電壓以便脫出更多的鋰,目前針對鈷酸鋰的電解質溶液可以充電到4.45V,三元材料可以充電到4.35V,繼續(xù)充到更高電壓,液態(tài)電解液會被氧化,正極表面也會發(fā)生不可逆相變,三元811電池的推廣目前便受到了耐高壓電解液的制約。而固態(tài)電解質的電化學窗口更寬,可達到5V,更加適應于高電壓型電極材料。隨著正極材料的持續(xù)升級,固態(tài)電解質能夠做出較好的適配,有利于提升電池系統(tǒng)的能量密度
兼容金屬鋰負極,提升能量密度上限:高容量與高電壓的特性,讓金屬鋰成為繼石墨與硅負極之后的“最終負極”。為了實現更高的能量密度目標,以金屬鋰為負極的電池體系已成為必然選擇。因為:
(1)鋰金屬的克容量為3860mAh/g,約為石墨(372mAh/g)的10倍,
(2)金屬鋰是自然界電化學勢最低的材料,為-3.04V。同時其本身就是鋰源,正極材料選擇面更寬,可以是含鋰或不含鋰的嵌入化合物,也可以是硫或硫化物甚至空氣,分別對應能量密度更高的鋰硫和鋰空電池,理論能量密度接近當前電池的10倍。
固態(tài)電解質在鋰金屬負極應用上的優(yōu)勢
鋰金屬負極在當前傳統(tǒng)液態(tài)電池體系難以實現。鋰金屬電池的研究最早可追溯到上世紀60年代,并在20世紀70年代已成功開發(fā)應用于一次電池。而在可充放電池領域,金屬鋰負極在液態(tài)電池中存在一系列技術問題至今仍缺乏有效的解決方法,比如金屬鋰與液態(tài)電解質界面副反應多、SEI膜分布不均勻且不穩(wěn)定導致循環(huán)壽命差,金屬鋰的不均勻沉積和溶解導致鋰枝晶和孔洞的不均勻形成。
固態(tài)電解質在解決鋰金屬負極應用問題上被科學界寄予厚望。研究者把解決金屬鋰負極的應用問題寄希望于固態(tài)電解質的使用,主要思路是避免液體電解質中持續(xù)發(fā)生的副反應,同時利用固體電解質的力學與電學特性抑制鋰枝晶的形成。此外,由于固態(tài)電解質將正極與負極材料隔離開,不會產生鋰枝晶刺破隔膜的短路效應。總而言之,固態(tài)電解質對于鋰金屬負極擁有更好的兼容性,鋰金屬材料將在固態(tài)電池平臺上率先應用。
減輕系統(tǒng)重量,能量密度進一步提升。固態(tài)電池系統(tǒng)重量減少進一步提升能量密度。動力電池系統(tǒng)需要先生產單體,單體封裝完成后將單體之間進行串聯(lián)組裝。若先在單體內部進行串聯(lián),則會導致正負極短路與自放電。固態(tài)電池電芯內部不含液體,可實現先串并聯(lián)后組裝,減少了組裝殼體用料,PACK設計大幅簡化。此外,由于徹底的安全特性,BMS等溫控組件將得以省去,并可通過無隔膜設計進一步為電池系統(tǒng)“減負”。
3、固態(tài)電池是最有希望率先產業(yè)化的下一代電池技術
固態(tài)電池體系革命更小。鋰硫電池、鋰空氣等體系需更換整個電池結構框架,難題更多也更大,而固態(tài)電池主要在于電解液的革新,正極與負極可繼續(xù)沿用當前體系,實現難度相對小。鋰金屬負極兼容,通過固態(tài)電解質實現。鋰硫、鋰空氣均需采用鋰金屬負極,而鋰金屬負極更易在固態(tài)電解質平臺實現。固態(tài)電池作為距離我們最近的下一代電池技術已成為科學界與產業(yè)界的共識,是后鋰電時代的必經之路。
下一篇:簡述關于鋰電池軟包模組的設計分析