鉅大LARGE | 點(diǎn)擊量:992次 | 2020年05月13日
開關(guān)電源保護(hù)電路的研究
1引言
評價(jià)開關(guān)電源的質(zhì)量指標(biāo)應(yīng)該是以安全性、可靠性為第一原則[1、2、3]。在電氣技術(shù)指標(biāo)滿足正常使用要求的條件下,為使電源在惡劣環(huán)境及突發(fā)故障情況下安全可靠地工作,必須設(shè)計(jì)多種保護(hù)電路,比如防浪涌的軟啟動(dòng),防過壓、欠壓、過熱、過流、短路、缺相等保護(hù)電路。同時(shí),在同一開關(guān)電源電路中,設(shè)計(jì)多種保護(hù)電路的相互關(guān)聯(lián)和應(yīng)注意的問題也要引起足夠的重視。
2防浪涌軟啟動(dòng)電路
開關(guān)電源的輸入電路大都采用電容濾波型整流電路,在進(jìn)線電源合閘瞬間,由于電容器上的初始電壓為零,電容器充電瞬間會形成很大的浪涌電流,特別是大功率開關(guān)電源,采用容量較大的濾波電容器,使浪涌電流達(dá)100A以上。在電源接通瞬間如此大的浪涌電流,重者往往會導(dǎo)致輸入熔斷器燒斷或合閘開關(guān)的觸點(diǎn)燒壞,整流橋過流損壞;輕者也會使空氣開關(guān)合不上閘[4]。上述現(xiàn)象均會造成開關(guān)電源無法正常工作,為此幾乎所有的開關(guān)電源都設(shè)置了防止流涌電流的軟啟動(dòng)電路,以保證電源正常而可靠運(yùn)行。防浪涌軟啟動(dòng)電路通常有晶閘管保護(hù)法和繼電器保護(hù)法兩大類。
(1)晶閘管保護(hù)法
圖1是采用晶閘管V和限流電阻R1組成的防浪涌電流電路。在電源接通瞬間,輸入電壓經(jīng)整流橋(D1~D4)和限流電阻R1對電容器C充電,限制浪涌電流。當(dāng)電容器C充電到約80%額定電壓時(shí),逆變器正常工作。經(jīng)主變壓器輔助繞組出現(xiàn)晶閘管的觸發(fā)信號,使晶閘管導(dǎo)通并短路限流電阻R1,開關(guān)電源處于正常運(yùn)行狀態(tài)。
圖1采用晶閘管和限流電阻組成的防浪涌電流電路
(2)繼電器保護(hù)法
圖2采用繼電器K和限流電阻R1構(gòu)成的防浪涌電流電路圖3替代R2C2延遲電路
圖2是采用繼電器K和限流電阻R1構(gòu)成的防浪涌電流電路。電源接通瞬間,輸入電壓經(jīng)整流(D1~D4)和限流電阻R1對濾波電容器C1充電,防止接通瞬間的浪涌電流,同時(shí)輔助電源Vcc經(jīng)電阻R2對并接于繼電器K線包的電容器C2充電,當(dāng)C2上的電壓達(dá)到繼電器K的動(dòng)作電壓時(shí),K動(dòng)作,其觸點(diǎn)K1.1閉合而旁路限流電阻R1,電源進(jìn)入正常運(yùn)行狀態(tài)。限流的延遲時(shí)間取決于時(shí)間常數(shù)(R2C2),通常選取為0.3~0.5s。為了提高延遲時(shí)間的準(zhǔn)確性及防止繼電器動(dòng)作抖動(dòng)振蕩,延遲電路可采用圖3所示電路替代R2C2延遲電路。
3過壓、欠壓及過熱保護(hù)電路
進(jìn)線電源過壓及欠壓對開關(guān)電源造成的危害,重要表現(xiàn)在器件因承受的電壓及電流能力超出正常使用的范圍而損壞,同時(shí)因電氣性能指標(biāo)被破壞而不能滿足要求。因此對輸入電源的上限和下限要有所限制,為此采用過壓、欠壓保護(hù)以提高電源的可靠性和安全性。
溫度是影響電源設(shè)備可靠性的最重要因素。根據(jù)有關(guān)資料分析表明[5],電子元器件溫度每升高2℃,可靠性下降10%,溫升50℃時(shí)的工作壽命只有溫升25℃時(shí)的1/6,為了防止功率器件過熱造成損壞,在開關(guān)電源中亦要設(shè)置過熱保護(hù)電路。
圖4過壓、欠壓、過熱保護(hù)電路
圖4是僅用一個(gè)4比較器LM339及幾個(gè)分立元器件構(gòu)成的過壓、欠壓、過熱保護(hù)電路。取樣電壓可以直接從輔助控制電源整流濾波后取得,它反映輸入電源電壓的變化,比較器共用一個(gè)基準(zhǔn)電壓,N1.1為欠壓比較器,N1.2為過壓比較器,調(diào)整R1可以調(diào)節(jié)過、欠壓的動(dòng)作閾值。N1.3為過熱比較器,RT為負(fù)溫度系數(shù)的熱敏電阻,它與R7構(gòu)成分壓器,緊貼于功率開關(guān)器件IGBT的表面,溫度升高時(shí),RT阻值下降,適當(dāng)選取R7的阻值,使N1.3在設(shè)定的溫度閾值動(dòng)作。N1.4用于外部故障應(yīng)急關(guān)機(jī),當(dāng)其正向端輸入低電平時(shí),比較器輸出低電平封鎖pWM驅(qū)動(dòng)信號。由于4個(gè)比較器的輸出端是并聯(lián)的,無論是過壓、欠壓、過熱任何一種故障發(fā)生,比較器輸出低電平,封鎖驅(qū)動(dòng)信號使電源停止工作,實(shí)現(xiàn)保護(hù)。如將電路稍加變動(dòng),亦可使比較器輸出高電平封鎖驅(qū)動(dòng)信號。
4缺相保護(hù)電路
由于電網(wǎng)自身原因或電源輸入接線不可靠,開關(guān)電源有時(shí)會出現(xiàn)缺相運(yùn)行的情況,且掉相運(yùn)行不易被及時(shí)發(fā)現(xiàn)。當(dāng)電源處于缺相運(yùn)行時(shí),整流橋某一臂無電流,而其它臂會嚴(yán)重過流造成損壞,同時(shí)使逆變器工作出現(xiàn)異常,因此,必須對缺相進(jìn)行保護(hù)。檢測電網(wǎng)缺相通常采用電流互感器或電子缺相檢測電路。由于電流互感器檢測成本高、體積大,故開關(guān)電源中一般采用電子缺相保護(hù)電路。圖5是一個(gè)簡單的缺相保護(hù)電路。三相平衡時(shí),R1~R3結(jié)點(diǎn)H電位很低,光耦合輸出近似為零電平。當(dāng)缺相時(shí),H點(diǎn)電位抬高,光耦輸出高電平,經(jīng)比較器進(jìn)行比較,輸出低電平,封鎖驅(qū)動(dòng)信號。比較器的基準(zhǔn)可調(diào),以便調(diào)節(jié)缺相動(dòng)作閾值。該缺相保護(hù)適用于三相四線制,而不適用于三相三線制。電路稍加變動(dòng),亦可用高電平封鎖pWM信號。
圖5三相四線制的缺相保護(hù)電路
圖6是一種用于三相三線制電源缺相保護(hù)電路,A、B、C缺任何一相,光耦器輸出電平低于比較器的反相輸入端的基準(zhǔn)電壓,比較器輸出低電平,封鎖pWM驅(qū)動(dòng)信號,關(guān)閉電源。比較器輸入極性稍加變動(dòng),亦可用高電平封鎖pWM信號。這種缺相保護(hù)電路采用光耦隔離強(qiáng)電,安全可靠,Rp1、Rp2用于調(diào)節(jié)缺相保護(hù)動(dòng)作閾值。
圖6三相三線制的缺相保護(hù)電路
5短路保護(hù)
開關(guān)電源同其它電子裝置相同,短路是最嚴(yán)重的故障,短路保護(hù)是否可靠,是影響開關(guān)電源可靠性的重要因素。IGBT(絕緣柵雙極型晶體管)兼有場效應(yīng)晶體管輸入阻抗高、驅(qū)動(dòng)功率小和雙極型晶體管電壓、電流容量大及管壓降低的特點(diǎn),是目前中、大功率開關(guān)電源最普遍使用的電力電子開關(guān)器件[6]。IGBT能夠承受的短路時(shí)間取決于它的飽和壓降和短路電流的大小,一般僅為幾μs至幾十μs。短路電流過大不僅使短路承受時(shí)間縮短,而且使關(guān)斷時(shí)電流下降率過大,由于漏感及引線電感的存在,導(dǎo)致IGBT集電極過電壓,該過電壓可使IGBT鎖定失效,同時(shí)高的過電壓會使IGBT擊穿。因此,當(dāng)出現(xiàn)短路過流時(shí),必須采取有效的保護(hù)措施。
為了實(shí)現(xiàn)IGBT的短路保護(hù),則必須進(jìn)行過流檢測。適用IGBT過流檢測的方法,通常是采用霍爾電流傳感器直接檢測IGBT的電流Ic,然后與設(shè)定的閾值比較,用比較器的輸出去控制驅(qū)動(dòng)信號的關(guān)斷;或者采用間接電壓法,檢測過流時(shí)IGBT的電壓降Vce,因?yàn)楣軌航岛卸搪冯娏餍畔ⅲ^流時(shí)Vce增大,且基本上為線性關(guān)系,檢測過流時(shí)的Vce并與設(shè)定的閾值進(jìn)行比較,比較器的輸出控制驅(qū)動(dòng)電路的關(guān)斷。
在短路電流出現(xiàn)時(shí),為了防止關(guān)斷電流的過大形成過電壓,導(dǎo)致IGBT鎖定無效和損壞,以及為了降低電磁干擾,通常采用軟降柵壓和軟關(guān)斷綜合保護(hù)技術(shù)。
在設(shè)計(jì)降柵壓保護(hù)電路時(shí),要正確選擇降柵壓幅度和速度,假如降柵壓幅度大(比如7.5V),降柵壓速度不要太快,一般可采用2μs下降時(shí)間的軟降柵壓,由于降柵壓幅度大,集電極電流已經(jīng)較小,在故障狀態(tài)封鎖柵極可快些,不必采用軟關(guān)斷;假如降柵壓幅度較?。ū热?V以下),降柵速度可快些,而封鎖柵壓的速度必須慢,即采用軟關(guān)斷,以防止過電壓發(fā)生。
為了使電源在短路故障狀態(tài)不中斷工作,又能防止在原工作頻率下持續(xù)進(jìn)行短路保護(hù)出現(xiàn)熱積累而造成IGBT損壞,采用降柵壓保護(hù)即可不必在一次短路保護(hù)立即封鎖電路,而使工作頻率降低(比如1Hz左右),形成間歇“打嗝”的保護(hù)方法,故障消除后即恢復(fù)正常工作。下面是幾種IGBT短路保護(hù)的實(shí)用電路及工作原理。
(1)利用IGBT的Vce設(shè)計(jì)過流保護(hù)電路
圖7采用IGBT過流時(shí)Vce增大的原理進(jìn)行保護(hù)
圖7是利用IGBT過流時(shí)Vce增大的原理進(jìn)行保護(hù)的電路,用于專用驅(qū)動(dòng)器EXB841。EXB841內(nèi)部電路能很好地完成降柵及軟關(guān)斷,并具有內(nèi)部延遲功能,以消除干擾出現(xiàn)的誤動(dòng)作。含有IGBT過流信息的Vce不直接送至EXB841的集電極電壓監(jiān)視腳6,而是經(jīng)快速恢復(fù)二極管VD1,通過比較器IC1輸出接至EXB841的腳6,其目的是為了消除VD1正向壓降隨電流不同而異,采用閾值比較器,提高電流檢測的準(zhǔn)確性。假如發(fā)生過流,驅(qū)動(dòng)器EXB841的低速切斷電路慢速關(guān)斷IGBT,以防止集電極電流尖峰脈沖損壞IGBT器件。
(2)利用電流傳感器設(shè)計(jì)過流保護(hù)電路
(a)利用電流傳感器進(jìn)行過流保護(hù)電路
(b)pWM控制電路的輸出驅(qū)動(dòng)波形圖
圖8利用電流傳感器進(jìn)行過流保護(hù)
圖8(a)是利用電流傳感器進(jìn)行過流檢測的IGBT保護(hù)電路,電流傳感器(SC)初級(1匝)串接在IGBT的集電極電路中,次級感應(yīng)的過流信號經(jīng)整流后送至比較器IC1的同相輸入端,與反相端的基準(zhǔn)電壓進(jìn)行比較,IC1的輸出送至具有正反饋的比較器IC2,其輸出接至pWM控制器UC3525的輸出控制腳10。不過流時(shí),VA
(3)綜合過流保護(hù)電路
圖9是利用IGBT(V1)過流集電極電壓檢測和電流傳感器檢測的綜合保護(hù)電路,電路工作原理是:負(fù)載短路(或IGBT因其它故障過流)時(shí),V1的Vce增大,V3門極驅(qū)動(dòng)電流經(jīng)R2,R3分壓器使V3導(dǎo)通,IGBT柵極電壓由VD3所限制而降壓,限制IGBT峰值電流幅度,同時(shí)經(jīng)R5C3延遲使V2導(dǎo)通,送去軟關(guān)斷信號。另一方面,在短路時(shí)經(jīng)電流傳感器檢測短路電流,經(jīng)比較器IC1輸出的高電平使V3導(dǎo)通進(jìn)行降柵壓,V2導(dǎo)通進(jìn)行軟關(guān)斷。
此外,還可以應(yīng)用檢測IGBT集電極電壓的過流保護(hù)原理,采用軟降柵壓、軟關(guān)斷及降低工作頻率保護(hù)技術(shù)的短路保護(hù)電路[7、8],這里不作祥細(xì)介紹了,有興趣的讀者請參考文獻(xiàn)[1]。開關(guān)電源保護(hù)功能雖屬電源裝置電氣性能要求的附加功能,但在惡劣環(huán)境及意外事故條件下,保護(hù)電路是否完善并按預(yù)定設(shè)置工作,對電源裝置的安全性和可靠性至關(guān)重要。驗(yàn)收技術(shù)指標(biāo)時(shí),應(yīng)對保護(hù)功能進(jìn)行驗(yàn)證。
開關(guān)電源的保護(hù)方法和電路結(jié)構(gòu)具有多樣性,但對具體電源裝置而言,應(yīng)選擇合理的保護(hù)方法和電路結(jié)構(gòu),以使得在故障條件下真正有效地實(shí)現(xiàn)保護(hù)。
圖9綜合過流保護(hù)電路
6結(jié)束語
開關(guān)電源保護(hù)功能雖屬電源裝置電氣性能要求的附加功能,但在惡劣環(huán)境及意外事故條件下,保護(hù)電路是否完善并按預(yù)定設(shè)置工作,對電源裝置的安全性和可靠性至關(guān)重要。驗(yàn)收技術(shù)指標(biāo)時(shí),應(yīng)對保護(hù)功能進(jìn)行驗(yàn)證。
開關(guān)電源的保護(hù)方法和電路結(jié)構(gòu)具有多樣性,但對具體電源裝置而言,應(yīng)選擇合理的保護(hù)方法和電路結(jié)構(gòu),以使得在故障條件下真正有效地實(shí)現(xiàn)保護(hù)。
開關(guān)電源保護(hù)電路設(shè)計(jì)完成后,必須先對開關(guān)電源進(jìn)行老化實(shí)驗(yàn),再驗(yàn)證各種保護(hù)電路的功能。
參考文獻(xiàn)
[1]何希才,新型開關(guān)電源設(shè)計(jì)與應(yīng)用[M],北京:科學(xué)出版社,2001,5~17。[2]王水平,付敏江,開關(guān)穩(wěn)壓電源-原理、設(shè)計(jì)與實(shí)用電路[M],西安:西安電子科技大學(xué)出版社,1997,23~30,40~58。[3]劉勝利,現(xiàn)代高頻開關(guān)電源實(shí)用技術(shù)[M],北京:電子工業(yè)出版社,2001,387~392,437~455。[4]張占松,高頻開關(guān)穩(wěn)壓電源[M],廣州:廣東科技出版社,1993,20~27。[5]鄒懷虛,開關(guān)電源副邊整流管尖峰干擾與抑制方法[M],北京:科學(xué)出版社,1998,39~41。[6]鄒懷虛,電源應(yīng)用技術(shù)[M],北京:科學(xué)出版社,1998,21~26。[7]盛祖權(quán),具有完善保護(hù)功能的IGBT驅(qū)動(dòng)器HL402[M],西安:電力電子技術(shù)出版社,1995,74~79。[8]齊長遠(yuǎn),有源功率因數(shù)校正技術(shù)[J],北京:人民郵電出版社,2003,5~19。