鉅大LARGE | 點(diǎn)擊量:1145次 | 2020年10月29日
材料對(duì)鋰離子動(dòng)力鋰電池安全性的影響詳解
一般而言,電池材料的熱穩(wěn)定性是鋰離子動(dòng)力鋰電池安全性的重要因素。這重要與電池材料的熱活性有關(guān)。當(dāng)電池溫度升高時(shí),電池內(nèi)部會(huì)發(fā)生許多放熱反應(yīng),假如出現(xiàn)的熱量超過了熱量的散失,就會(huì)發(fā)生熱溢潰。鋰離子電池材料之間重要放熱反應(yīng)有:SEI膜的分解;電解液分解;正極分解;負(fù)極與電解液的反應(yīng);負(fù)極與粘合劑的反應(yīng);此外,由于電池存在電阻,使用時(shí)也出現(xiàn)少量熱量。
3.2.1正極材料
鋰離子電池正極材料一直是限制鋰離子電池發(fā)展的關(guān)鍵。和負(fù)極材料相比,正極材料能量密度和功率密度低,并且也是引發(fā)鋰離子電池安全隱患的重要原因。正負(fù)極材料的結(jié)構(gòu)對(duì)鋰離子的嵌入和脫嵌有決定性影響,因而影響著電池的循環(huán)壽命。使用容易脫嵌的活性材料,充放電循環(huán)時(shí),活性材料的結(jié)構(gòu)變化小且可逆,有利于延長(zhǎng)電池的壽命。在鋰離子電池濫用的條件下,隨著電池內(nèi)部溫度的升高,正極發(fā)生活性物質(zhì)的分解和電解液的氧化,這兩種反應(yīng)將出現(xiàn)大量的熱,從而導(dǎo)致電池溫度的進(jìn)一步上升,同時(shí)不同的脫鋰狀態(tài)對(duì)活性物質(zhì)晶格轉(zhuǎn)變、分解溫度和電池的熱穩(wěn)定性影響相差很大。尋找熱穩(wěn)定性較好的正極材料是鋰離子動(dòng)力鋰電池的關(guān)鍵。層狀LiCoO2、LiNiO2、尖晶石LiMn2O4和橄欖石LiFePO4是目前研究較多的正極材料。LiCoO2熱穩(wěn)定性適中,電化學(xué)性能優(yōu)異,但由于鈷資源的限制,LiCoO2在鋰離子動(dòng)力鋰電池方面的應(yīng)用受到限制;LiNiO2雖然容量較高,但合成困難、循環(huán)性能較差,也不適合作為鋰離子動(dòng)力鋰電池的正極材料;LiMn2O4熱穩(wěn)定性好、資源豐富、價(jià)格低廉,適合作為鋰離子動(dòng)力鋰電池的正極材料;LiFePO4由于合成原料資源豐富,成本低,對(duì)環(huán)境無(wú)污染,又有較高的比容量、有效利用率、適宜的電壓及較好的循環(huán)性能,是一種有應(yīng)用前景的鋰離子正極材料之一。
3.2.2負(fù)極材料
早期使用的負(fù)極材料是金屬鋰,而以金屬鋰為負(fù)極組裝的電池在多次充放電過程中易出現(xiàn)鋰枝晶,鋰枝晶會(huì)刺破隔膜,導(dǎo)致電池短路、漏液甚至發(fā)生爆炸。使用嵌鋰化合物防止了鋰枝晶的出現(xiàn),從而大大提高了鋰離子電池的安全性。目前在鋰離子二次電池中較具使用價(jià)值和應(yīng)用前景的碳重要有三種:一是高度石墨化得碳,二是軟碳和硬碳,三是碳納米材料。
當(dāng)前鋰離子電池所用的負(fù)極材料大部分采用石墨,而石墨的理論適量比容量只有372mAh/g,體積比容量也只有800mAh/cm3。盡管目前研制出的醫(yī)學(xué)熱解碳具有700mAh/g的比容量,但是它的體積比容量還是非常有限。由于大功率的要,高能量密度的金屬和金屬化合物妒忌材料引起了廣泛關(guān)注,研究重要向微小顆粒(納米級(jí))、單相向多相、摻雜非活性材料等方面發(fā)展。金屬和合金類負(fù)極在循環(huán)過程中,體積會(huì)發(fā)生很大的變化,循環(huán)壽命短。為延長(zhǎng)壽命,采用金屬學(xué)上的近似法開發(fā)控制合金材料的組成和微觀組織(納米級(jí))及表面處理技術(shù)。
研究表明:隨著溫度的升高,嵌鋰狀態(tài)下的碳負(fù)極將首先與電解液發(fā)生放熱反應(yīng)。在相同的充放電條件下,電解液與嵌鋰人造石墨反應(yīng)的放熱速率遠(yuǎn)大于嵌鋰的MCMB、碳纖維、焦炭等的反應(yīng)放熱速率。硬碳類材料、軟碳類材料、石墨類材料的碳層間距約分別為0.38nm、0.34~0.35nm、0.335nm,當(dāng)鋰嵌入碳層后,層間距約為0.371nm。石墨類材料的層間距最小,其在鋰離子電池的嵌入和脫出過程中形變最大,鋰離子在此類碳層中的擴(kuò)散速度也較慢,大電流充放電時(shí),極化大、電阻大,電池的安全性差,硬碳類材料則相反。
然而也有人認(rèn)為:石墨化程度新增可以降低鋰離子擴(kuò)散的活化性能,有利于鋰離子的擴(kuò)散,而硬碳類材料由于存在大量的空洞,大電流充放時(shí),其表現(xiàn)接近于金屬鋰負(fù)極,安全性反而不好。在新材料的探索方面,鋰化過渡金屬氮化物及過渡金屬磷族化合物是很好的例子,對(duì)該類材料的進(jìn)一步研究有可能為鋰離子蓄電池負(fù)極材料的發(fā)展注入新的活力。